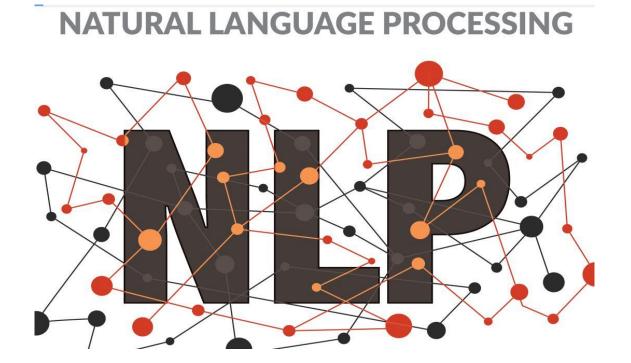


KGTrust: Evaluating Trustworthiness of SIoT via Knowledge Enhanced Graph Neural Networks

Zhizhi Yu¹, Di Jin¹, Cuiying Huo¹, Zhiqiang Wang¹, Xiulong Liu¹, Heng Qi², Jia Wu³, Lingfei Wu⁴ ¹College of Intelligence and Computing, Tianjin University, Tianjin, China ²School of Computer Science and Technology, Dalian University of Technology, Liaoning, China ³School of Computing, Macquarie University, Sydney, Australia ⁴Content and Knowledge Graph, Pinterest, New York, USA

code: None

2023. 6. 15 • ChongQing

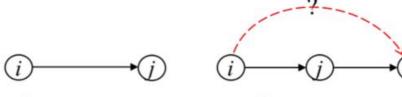


Reported by Junhao Cao

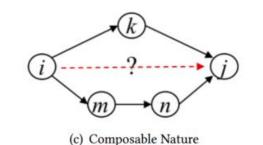
1.Introduction

2.Method

3.Experiments



Introduction


Graph neural networks for trust evaluation typically adopt a straightforward way such as one-hot or node2vec to comprehend node characteristics, which ignores the valuable semantic knowledge attached to nodes.

The structure of SIoT is usually complex, the properties of SIoT trust (including asymmetric, propagative, and composable nature) hard to preserve during information propagation.

(a) Asymmetric Nature

(b) Propagative Nature

Asymmetric Nature

$$t_{ij} \neq t_{ji}.\tag{1}$$

Propagative Nature

$$t_{ij} \wedge t_{jk} \Longrightarrow t_{ik}.$$
 (2)

Figure 1: The illustration of properties of SIoT trust.

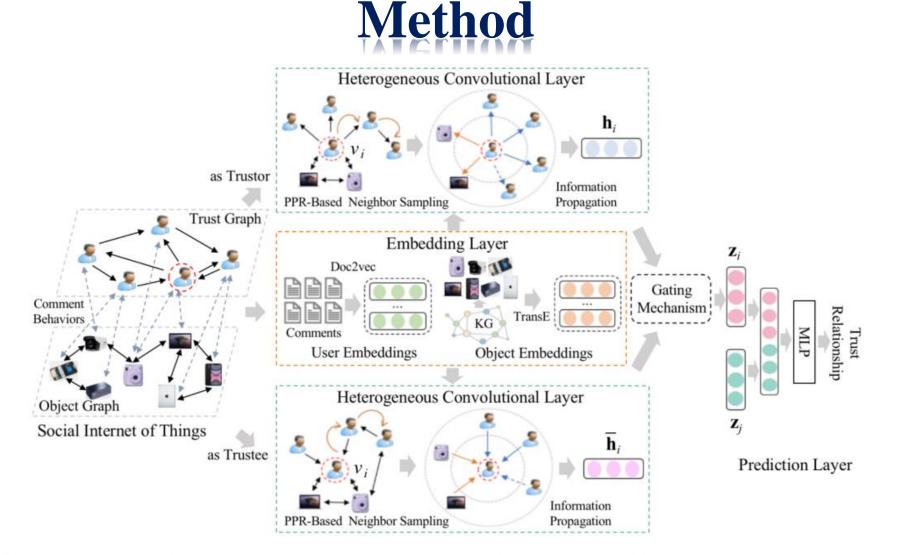


Figure 2: The architecture of KGTrust, which is constituted of three key components: 1) Embedding Layer: a comprehensive user and object modeling by integrating user comments and external knowledge triples; 2) Heterogeneous Convolutional Layer: a knowledge enhanced graph neural network to further mine and learn node latent embeddings; as well as 3) Prediction Layer: measuring the trust relationships between user pairs.

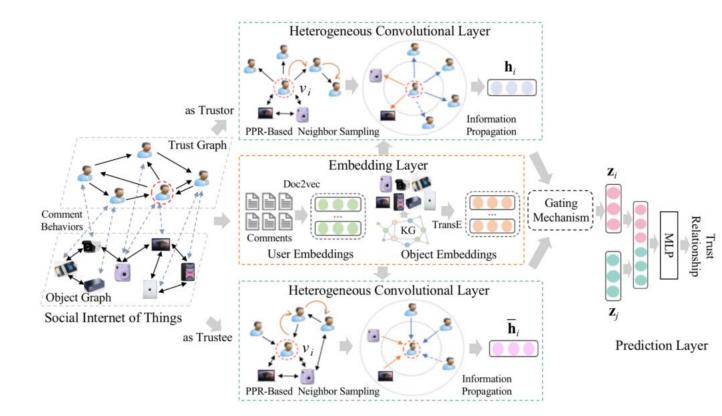


Figure 2: The architecture of KGTrust, which is constituted of three key components: 1) Embedding Layer: a comprehensive user and object modeling by integrating user comments and external knowledge triples; 2) Heterogeneous Convolutional Layer: a knowledge enhanced graph neural network to further mine and learn node latent embeddings; as well as 3) Prediction Layer: measuring the trust relationships between user pairs.

 $G = (V, E, \mathcal{A}, \mathcal{R}, \psi, \varphi),$

- $\psi:V\to\mathcal{A}$
- $\varphi : E \to \mathcal{R}$
- $\mathcal{A} \in \{\text{user, object}\}$

 $\mathcal{R} \in \{\langle user, user \rangle, \langle user, object \rangle, \langle object, user \rangle, \langle object, object \rangle\}$

$$\mathbf{m}_{i}^{(l)} = \text{AGG}^{(l)}(\{\mathbf{h}_{j}^{(l-1)} : v_{j} \in \mathcal{N}(v_{i})\}),$$

$$\mathbf{h}_{i}^{(l)} = \text{UPD}^{(l)}(\mathbf{h}_{i}^{(l-1)}, \mathbf{m}_{i}^{(l)}),$$
(3)

Embedding Layer

 $\mathbf{h}_i = \text{Doc2vec}(d_i). \tag{4}$

$$f(h, r, t) = -||\mathbf{h} + \mathbf{r} - \mathbf{t}||_2^2,$$
(5)

$$\mathbf{h}_{i}^{\prime} = \mathbf{W}_{\psi_{i}} \cdot \mathbf{h}_{i},\tag{6}$$

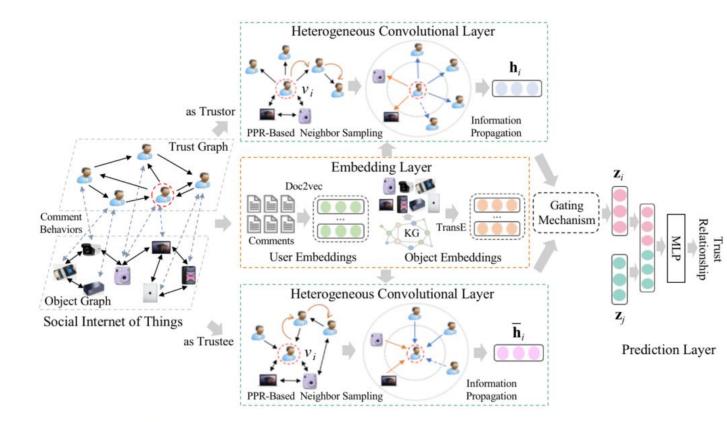


Figure 2: The architecture of KGTrust, which is constituted of three key components: 1) Embedding Layer: a comprehensive user and object modeling by integrating user comments and external knowledge triples; 2) Heterogeneous Convolutional Layer: a knowledge enhanced graph neural network to further mine and learn node latent embeddings; as well as 3) Prediction Layer: measuring the trust relationships between user pairs.

PPR-Based Neighbor Sampling

 $\mathbf{P} = (1 - \lambda)\hat{\mathbf{A}}\mathbf{P} + \lambda\mathbf{I},\tag{7}$

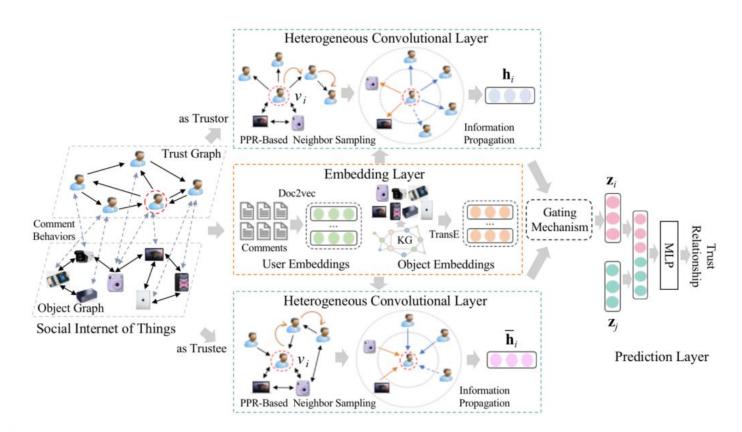
 $\mathbf{\hat{A}} = \mathbf{\tilde{D}}^{-\frac{1}{2}} \mathbf{\tilde{A}} \mathbf{\tilde{D}}^{-\frac{1}{2}}$

$$N_i = \operatorname*{arg\,max}_{V' \subset V_U, |V'|=k} \sum_{v_i \in V'} p_{ij},\tag{8}$$

Information Propagation

$$\mathbf{h}_{\psi} = \sum_{v_j} \hat{a}_{ij} \mathbf{h}'_j. \tag{9}$$

$$\alpha_{\psi} = \operatorname{softmax}_{\psi}(\sigma(\eta_{\psi}^{T}[\mathbf{h}_{i}', \mathbf{h}_{\psi}])), \qquad (10)$$


$$\beta_{ij} = \operatorname{softmax}_{v_j}(\sigma(\gamma^T \cdot \alpha_{\psi'}[\mathbf{h}'_i, \mathbf{h}'_j])), \tag{11}$$

$$\mathbf{H}^{(l)} = \sigma(\sum_{\psi \in \mathcal{A}} \mathbf{B}_{\psi} \cdot \mathbf{H}_{\psi}^{(l-1)} \cdot \mathbf{W}_{\psi}^{(l-1)}),$$
(12)

 $\mathbf{B}_{\psi} = (\beta_{ij})_{n \times n}$ rep resents the attention matrix.

Method

Information Fusion

$$\mathbf{z}_i = \mathbf{g}_e \odot \mathbf{h}_i + (1 - \mathbf{g}_e) \odot \overline{\mathbf{h}}_i, \tag{13}$$

$$g_e = \text{sigmoid}(\tilde{g}_e),$$
 (14)

$$\tilde{y}_{ij} = \text{softmax}(\text{MLP}(\mathbf{z}_i \| \mathbf{z}_j)), \tag{15}$$

$$\mathcal{L} = -\sum_{v_i v_j} y_{ij} \ln \tilde{y}_{ij}, \tag{16}$$

Figure 2: The architecture of KGTrust, which is constituted of three key components: 1) Embedding Layer: a comprehensive user and object modeling by integrating user comments and external knowledge triples; 2) Heterogeneous Convolutional Layer: a knowledge enhanced graph neural network to further mine and learn node latent embeddings; as well as 3) Prediction Layer: measuring the trust relationships between user pairs.

Table 1: Statistics of the datasets.

	FilmTrust	Ciao	Epinions
#Users	1508	4409	8174
#Objects	2071	12,082	11,379
#Comment Behaviors	-	136,105	306,133
#Trust Relationships	1853	88,649	224,589
Trust Network Density	0.0008	0.0046	0.0034

"-" denotes no such information provided by the dataset.

Table 2: Performance comparions on three SIoT datasets in terms of Accuracy (%) and F1-Score (%). (bold: best)

Datasets	Metrics	GAT	SGC	SLF	STNE	SNEA	DeepTrust	AtNE-Trust	Guardian	KGTrust
FilmTrust –	Accuracy	68.29	75.61	65.55	72.87	63.91	53.05	63.11	77.74	79.82
	F1-Score	71.74	77.14	65.65	73.27	66.67	64.63	65.13	79.78	80.92
Ciao	Accuracy	64.28	69.93	72.17	71.33	68.97	50.17	68.23	72.17	72.56
	F1-Score	71.36	70.34	73.39	71.38	70.83	66.52	71.50	73.50	74.30
Epinions	Accuracy	72.05	78.62	80.83	79.51	74.63	58.38	74.35	80.82	81.39
	F1-Score	75.57	78.76	80.95	78.57	74.92	64.80	74.88	81.11	81.84

Table 3: Performance comparions with different training ratios on three SIoT datasets. (bold: best)

Datasets	Metrics	Training	GAT	SGC	SLF	STNE	SNEA	DeepTrust	AtNE-Trust	Guardian	KGTrust
10		50%	60.36	71.26	54.96	69.42	60.14	49.51	60.17	74.14	74.94
		60%	62.79	72.21	55.51	69.98	61.01	50.08	60.72	74.81	76.11
	Accuracy (%)	70%	64.39	73.16	61.22	72.14	62.90	50.20	62.14	75.51	78.16
	(14)	80%	67.28	74.01	63.61	72.78	63.30	51.68	63.00	76.45	79.66
		90%	68.29	75.61	65.55	72.87	63.91	53.05	63.11	77.74	79.82
rimirust		50%	62.35	71.52	56.48	69.44	62.45	60.11	60.27	75.52	75.98
	Et C	60%	63.51	72.40	57.37	70.17	62.68	60.38	61.69	76.52	76.73
	F1-Score (%)	70%	66.80	73.83	62.23	72.17	64.83	62.20	63.42	78.56	78.94
		80%	68.34	74.40	65.00	72.33	65.12	63.41	63.88	79.08	80.47
		90%	71.74	77.14	65.65	73.27	66.67	64.63	65.13	79.78	80.92
		50%	59.76	67.40	71.32	70.69	66.88	49.80	62.24	71.27	71.72
		60%	61.03	68.29	71.66	70.87	67.82	50.01	62.66	71.62	72.11
	Accuracy (%)	70%	62.17	68.39	71.89	70.92	68.15	50.03	63.52	71.90	72.34
	(~)	80%	63.01	68.81	72.08	71.05	68.53	50.07	66.58	71.94	72.36
		90%	64.28	69.93	72.17	71.33	68.97	50.17	68.23	72.17	72.56
Ciao		50%	66.47	67.53	71.87	70.83	67.68	61.30	62.76	71.84	72.85
		60%	68.08	68.58	72.68	70.85	68.87	61.38	63.03	72.28	73.11
	F1-Score (%)	70%	70.61	68.78	72.88	71.07	69.45	61.77	65.37	72.67	73.23
		80%	70.85	69.76	73.00	71.32	70.15	63.63	69.92	73.32	74.06
		90%	71.36	70.34	73.39	71.38	70.83	66.52	71.50	73.50	74.30
Epinions –		50%	61.70	77.22	79.99	79.04	73.84	55.53	71.90	80.15	80.59
	Accuracy (%)	60%	61.92	77.57	80.05	79.13	74.12	56.25	73.01	80.22	80.65
		70%	64.76	77.82	80.44	79.32	74.36	56.71	73.40	80.31	80.96
		80%	70.79	78.17	80.60	79.45	74.59	58.23	73.59	80.55	81.14
		90%	72.05	78.62	80.83	79.51	74.63	58.38	74.35	80.82	81.39
	F1-Score (%)	50%	65.60	77.63	80.08	78.18	73.28	61.27	72.87	80.41	81.05
		60%	66.64	77.92	80.15	78.22	73.73	63.93	73.74	80.51	81.11
		70%	72.67	78.05	80.46	78.46	74.19	64.10	73.80	80.58	81.46
		80%	72.84	78.56	80.63	78.50	74.61	64.36	74.29	80.86	81.70
		90%	75.57	78.76	80.95	78.57	74.92	64.80	74.88	81.11	81.84

Table 4: Comparisons of our KGTrust and its five variants on three SIOT datasets in terms of Accuracy (%) and F1-Score (%). For FilmTrust, we do not introduce structured triples as no object descriptions provided, while such information is provided by Ciao and Epinions.

Datasets	Film	Frust	Ci	ao	Epinions		
Datasets	Accuracy	F1-Score	Accuracy	F1-Score	Accuracy	F1-Score	
KGTrust	79.82	80.92	72.56	74.30	81.39	81.84	
- w/o Triples	-	-	71.10	72.48	80.51	80.86	
- w/o PPR	78.29	78.74	72.12	72.88	80.71	81.19	
- w/o Trustee	78.13	79.18	59.07	64.60	70.73	72.10	
- w/o Trustor	77.22	78.37	60.58	65.67	70.62	72.01	
KGTrust (Con)	76.76	77.51	59.28	64.74	70.75	73.10	

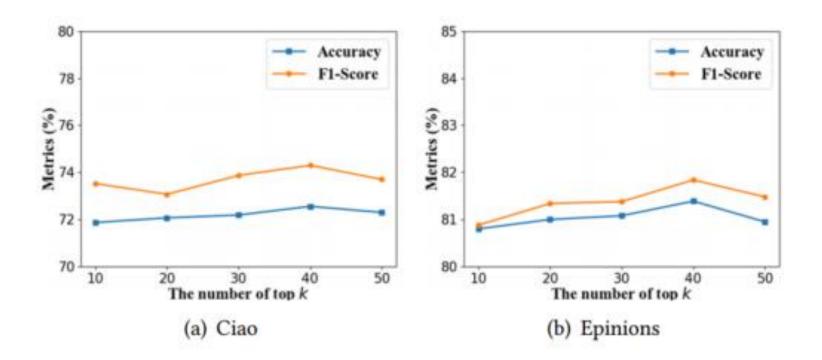


Figure 3: The performance with different numbers of top k for PPR-based neighbor sampling.

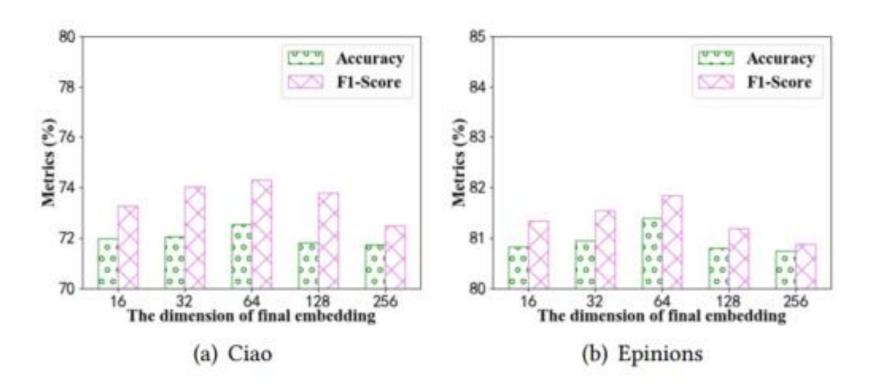
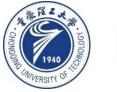



Figure 4: The performance with different dimensions of final embedding.

Thank you!

